Prediction Accuracy of Color Imagery from Hyperspectral Imagery
نویسندگان
چکیده
In this paper we present the utilization of high-spectral resolution imagery for improving low-spectral resolution imagery. In our analysis, we assume that an acquisition of high spectral resolution images provides more accurate spectral predictions of low spectral resolution images than a direct acquisition of low spectral resolution images. We illustrate the advantages by focusing on a specific case of images acquired by a hyperspectral (HS) camera and a color (red, green, and blue or RGB) camera. First, we identify two directions for utilization of HS images, such as (a) evaluation and calibration of RGB colors acquired from commercial color cameras, and (b) color quality improvement by achieving sub-spectral resolution. Second, we elaborate on challenges of RGB color calibration using HS information due to non-ideal illumination sources and non-ideal hyperspectral camera characteristics. We describe several adjustment (calibration) approaches to compensate for wavelength and spatial dependencies of real acquisition systems. Finally, we evaluate two color cameras by establishing ground truth RGB values from hyperspectral imagery and by defining pixel-based, correlation-based and histogram-based error metrics. Our experiments are conducted with three illumination sources (fluorescent light, Oriel Xenon lamp and incandescent light); with one HS Opto-Knowledge Systems camera and two color (RGB) cameras, such as Sony and Canon. We show a data-driven color-calibration as a method for improving image color quality. The applications of the developed techniques for HS to RGB image calibrations and sub-spectral resolution predictions are related to real-time model-based scene classification and scene simulation.
منابع مشابه
Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملKernel-Based Nonparametric Fisher Classifier for Hyperspectral Remote Sensing Imagery
Hyperspectral Imagery Sensing (HIS) is widely gained tremendous popularity in many research areas such as remotely sensed satellite imaging and aerial reconnaissance. HIS is an important technique with the measurement, analysis, and interpretation of spectra acquired sensing scene an airborne or satellite sensor. The development of sensor technology brought the developing of collecting image da...
متن کامل